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Introduction

e Java state provider -> XML state provider
e [t might be difficult for some users to deal
directly with the XML

e We need a simple Ul

tatus”
US_RUN_SYSCALL"

to define those things

/condition:

ttribute type 0 e="CurrentCPU"




Introduction - Goal

e Capturing in a convivial way all the
Information related to data-driven trace

analysis



Related work

e State provider

e Afttribute tree
e Graphiti and Eclipse Modeling
Framework (EMF)



Attribute tree

e Each attribute contains a state value
e Each attribute node represents a system

resource
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vf/(}{amﬂti and EMF

e Graphiti is a graphic framework
e Editor for domain models like EMF
e We could have also used another graphic

framework like Sirius



Solution

e Generate the actual XML with a modeling
tool

e Develop a state machine model

o Adapted to tracing
o Based on UML

e Use Graphiti to manipulate this model
e Define an attribute tree for easier

modeling
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1. Build the corresponding attribute tree for
the type of trace to analyse

2. Build the state machine that represents
your analysis

3. Use the generated file to execute your

analysis



" V’/ﬁults - Model

e Transition behavior -> State change

e State changes are defined as an attribute
and its updated value

e The “Choice” pseudostate from UML ->

Condition



Results - Model
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Results - Graphiti
editor

e Trace analysis of the Linux kernel

e Easy to build and intuitive
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Results - Attribute

e Define your attribute tree once

beforehand

e Simply select the defined attributes when

building the state machine
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Results - State
machine

e Specity the attribute that will be changed
with your state machine

e Automatic state change
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Results - State
machine

e Add additional information
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http://www.youtube.com/watch?v=0HtwQbNAGDc

- Results - Extract
Information

We need to convert the diagram to the
actual XML

Extract information from the model that
1s generated

Organize it and write the XML
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e Filter and pattern support
e Specity views by adding information on
the state diagram

e Better integration with Trace Compass

o Synchronise views with the editor and vice versa



/

o Conclusion

e We have an editor to capture all the
information related to trace analysis
e A more efficient way to make the XML

state provider



