
Visually representing data-driven 
analysis using state diagrams

Progress Report Meeting
Dec 2014

Simon Delisle
Michel Dagenais



Presentation plan

● Introduction

● Related work

● Proposed solution

● Results

● Demo

● Road ahead



● Java state provider -> XML state provider

● It might be difficult for some users to deal 

directly with the XML

● We need a simple UI

to define those things

Introduction



Introduction - Goal

● Capturing in a convivial way all the 

information related to data-driven trace 

analysis



Related work

● State provider

● Attribute tree

● Graphiti and Eclipse Modeling 

Framework (EMF)



Attribute tree

● Each attribute contains a state value

● Each attribute node represents a system 

resource
CPUs

CPU*
Status

Threads
Thread*

Status

Tree



Graphiti and EMF

● Graphiti is a graphic framework

● Editor for domain models like EMF

● We could have also used another graphic 

framework like Sirius



Solution

● Generate the actual XML with a modeling 

tool

● Develop a state machine model

○ Adapted to tracing

○ Based on UML

● Use Graphiti to manipulate this model

● Define an attribute tree for easier 

modeling



Workflow

1. Build the corresponding attribute tree for 

the type of trace to analyse

2. Build the state machine that represents 

your analysis

3. Use the generated file to execute your 

analysis



Results - Model

● Transition behavior -> State change

● State changes are defined as an attribute 

and its updated value

● The “Choice” pseudostate from UML -> 

Condition



Results - Model



Results - Graphiti 
editor

● Trace analysis of the Linux kernel

● Easy to build and intuitive



Results - Attribute 
tree

● Define your attribute tree once 

beforehand

● Simply select the defined attributes when 

building the state machine



Results - State 
machine

● Specify the attribute that will be changed 

with your state machine

● Automatic state change



Results - State 
machine

● Add additional information



Demo

http://www.youtube.com/watch?v=0HtwQbNAGDc


Results - Extract 
information

● We need to convert the diagram to the 

actual XML

● Extract information from the model that 

is generated

● Organize it and write the XML



Road ahead

● Filter and pattern support

● Specify views by adding information on 

the state diagram

● Better integration with Trace Compass

○ Synchronise views with the editor and vice versa



Conclusion

● We have an editor to capture all the 

information related to trace analysis

● A more efficient way to make the XML 

state provider


