Visually representing data-driven
analysis using state diagrams

Simon Delisle

Michel Dagenais

Progress Report Meeting
Dec 2014

LE GENIE _
EN PREMIERE CLASSE

Presentation plan

e Introduction

e Related work

e Proposed solution
e Results

e Demo

e Road ahead

Introduction

e Java state provider -> XML state provider
e [t might be difficult for some users to deal
directly with the XML

e We need a simple Ul

tatus”
US_RUN_SYSCALL"

to define those things

/condition:

ttribute type 0 e="CurrentCPU"

Introduction - Goal

e Capturing in a convivial way all the
Information related to data-driven trace

analysis

Related work

e State provider

e Afttribute tree
e Graphiti and Eclipse Modeling
Framework (EMF)

Attribute tree

e Each attribute contains a state value
e Each attribute node represents a system

resource

Tree

CPUs

CPU*

I_ Status

Threads
Thread*

I_ Status

vf/(}{amﬂti and EMF

e Graphiti is a graphic framework
e Editor for domain models like EMF
e We could have also used another graphic

framework like Sirius

Solution

e Generate the actual XML with a modeling
tool

e Develop a state machine model

o Adapted to tracing
o Based on UML

e Use Graphiti to manipulate this model
e Define an attribute tree for easier

modeling

:«_-;/____;4_-----**‘ — = - /
orkflow

—

1. Build the corresponding attribute tree for
the type of trace to analyse

2. Build the state machine that represents
your analysis

3. Use the generated file to execute your

analysis

" V’/ﬁults - Model

e Transition behavior -> State change

e State changes are defined as an attribute
and its updated value

e The “Choice” pseudostate from UML ->

Condition

Results - Model

Name |
Statemachine AbstractState Transition

ﬁ P% 1

| | |
0.
StateAttribute

PseudoState | State |) |

| .
| | StateChange |%_J

/4 V\ lo.
InitialState | ConditionalState I StateValue |
| | ’ |

0.
AbstractCondition | o
FieldCondition AttributeCondition |

v
I -

Results - Graphiti
editor

e Trace analysis of the Linux kernel

e Easy to build and intuitive

- kernel_statemachine = 7

. Palette 3
[} Select

cPU i Marquee

(= Connections <«

Transition

,/ \'; = Objects
“ CPU_IRQ “‘| State

N X AT ™ Initial State
o Final State

(cPU_USERMODE |
, / Condition

/\
then N

(ALL_STATE)

ca_handier /ox

softirq_raise ______/) @
/_\/\ //
(sOFT_IrQ) Y

State machine

\ / [\'.
N S (cPu_iDLE))
__/ /
T . (cPu_syscALL |
—>{ CPU_SOFTIRQ) \ /,./

softirq_entry L /

tree

Results - Attribute

e Define your attribute tree once

beforehand

e Simply select the defined attributes when

building the state machine

[Attribute tree &2 B = 7

= s e
== | || | Query

v B CPUs
v A Scpu
> W Status
W Curren t_thread
v W Threads
v A Snext_tid
W System_call
v A Sthread (/root/CPUs/cpu/Current_thread)
W Status

A Sirg
v B Soft_IRQs
A Svec

Results - State
machine

e Specity the attribute that will be changed
with your state machine

e Automatic state change

i.i Marquee

= Connections «

Transition

Final State

State machine

ttttttttttt

eeeeeeeeeeeeeeeee

Results - State
machine

e Add additional information

i Histogram is| Properties 2l Bookmarks

Main

CPU_STATUS

State change

| State attribute

exit_syscall

-k-—h——-\ ° - ° /

CPU_USERMODE (cPU_SYSCALL

sys_*

v B CPUs

v A Scpu

> W Status
B Current_thread

v M Threads

v A Sthread (/root/CPUs/cpu/Current_thread)
| > W Status
| BT |

v A Snext_tid

T Y

Name exit_syscall
State Change

/CPUs/cpu/Status = CPU_USERMODE

Attribute tree

|Add/Edit state change

Remove state change

| W System_call -
v M Ressources
v Bl IRQs
A Sirq
v B Soft_IRQs b
;| A Svec b

|—

State value
Type

Value

eventName

Ok | | Cancel
T —

http://www.youtube.com/watch?v=0HtwQbNAGDc

- Results - Extract
Information

We need to convert the diagram to the
actual XML

Extract information from the model that
1s generated

Organize it and write the XML

F_-J/---»:_‘_-_'?4_ — = - /
oad ahead

—

e Filter and pattern support
e Specity views by adding information on
the state diagram

e Better integration with Trace Compass

o Synchronise views with the editor and vice versa

/

o Conclusion

e We have an editor to capture all the
information related to trace analysis
e A more efficient way to make the XML

state provider

